Factory genuine parts, engineered to original tolerances, are designed for optimum dependability — specifically for your blower. Design and material innovations are born from years of experience with hundreds of different blower applications. When you specify factory genuine parts you are assured of receiving parts that incorporate the most current design advancements… manufactured in our state–of–the–art blower factory under exacting quality standards.

Your AUTHORIZED DISTRIBUTOR offers all the backup you require. A worldwide network of authorized distributors provides the finest product support in the blower industry.

Your local AUTHORIZED DISTRIBUTOR maintains a large inventory of genuine parts and is also backed by direct access to our Master Distribution Center (MDC) in Memphis, Tennessee, for immediate emergency response.

1. Trained parts technical representatives to assist you in selecting the correct replacement parts.
2. Complete inventory of new machines and new, genuine factory parts.
3. A full line of factory tested AEON™ PD blower lubricants specifically formulated for optimum performance in all blowers.
4. Authorized distributor service technicians are factory–trained and skilled in blower maintenance and repair. They are ready to respond and assist you by providing fast, expert maintenance and repair services.

INSTRUCTIONS FOR ORDERING REPAIR PARTS

For pricing and ordering information, contact your nearest AUTHORIZED FACTORY DISTRIBUTOR. When ordering parts, specify Blower MODEL and SERIAL NUMBER (see nameplate on unit).

Use this Parts List to select the parts you require. Where NOT specified, quantity of parts required per blower is one (1); where more than one is required per unit, quantity is indicated.

Specify EXACTLY the number of parts required.

Rely upon the knowledge and experience of your AUTHORIZED DISTRIBUTOR and let them assist you in making the proper parts selection for your blower.

For the location of your local authorized Gardner Denver Blower/ Vacuum Pump distributor refer to the yellow pages of your phone directory or contact:

Gardner Denver Blower Division
100 Gardner Park
Peachtree City, GA 30269
Phone: (770) 632–5000
Fax: (770) 486–5628
FOREWORD

Gardner Denver® blowers are the result of advanced engineering and skilled manufacturing. To be assured of receiving maximum service from this machine the owner must exercise care in its operation and maintenance. This book is written to give the operator and maintenance department essential information for day-to-day operation, maintenance and adjustment. Careful adherence to these instructions will result in economical operation and minimum downtime.

⚠️ DANGER

Danger is used to indicate the presence of a hazard which will cause severe personal injury, death, or substantial property damage if the warning is ignored.

⚠️ WARNING

Warning is used to indicate the presence of a hazard which can cause severe personal injury, death, or substantial property damage if the warning is ignored.

⚠️ CAUTION

Caution is used to indicate the presence of a hazard which will or can cause minor personal injury or property damage if the warning is ignored.

⚠️ NOTICE

Notice is used to notify people of installation, operation or maintenance information which is important but not hazard-related.
TABLE OF CONTENTS

Maintain Blower Reliability and Performance with Genuine Gardner Denver Parts and Support Services .. i

Instructions For Ordering Repair Parts ... i

Foreword .. ii

Index ... iv, v

List of Illustrations ... v

Safety Precautions .. vi

Introduction, Your Key To Trouble Free Service ... 1

Section 1, Equipment Check .. 1

Section 2, Installation ... 2

Section 3, Operation ... 9

Section 4, Maintenance .. 14

Section 5, Parts List ... 18

Section 6, Disassembly Instructions ... 23

Section 7, Assembly Instructions ... 27

Warranty .. Last Page
INDEX

Accessories .. 3
Couplings .. 4
Inlet Filter or Filter Silencer 3
Air Filters and Filter–Silencers, Maintenance 15
Altitude ... 11
ASSEMBLY INSTRUCTIONS, SECTION 7 27

Bearing Oil Seals ... 16
Blower Failure, Common Causes 17
Blower Overhaul .. 17
Blower Startup Checklist 13
Bypass Valve ... 6

Check
 Daily .. 9
 Prestart ... 9
Check Valve ... 6
Checklist, Blower Startup 13
Construction ... 2
Couplings ... 4

Daily Check .. 9
DISASSEMBLY INSTRUCTIONS, SECTION 6 23
Discharge Piping ... 6
Discharge Silencer 16
Drawings, Outline 6
Drive, V–Belt ... 4
Drive Installation ... 4
 V–Belt Drive ... 4
Dry Type Filter and Filter–Silencer, Maintenance . 16

Emergencies ... 12
EQUIPMENT CHECK, SECTION 1 1
Exchanger, Heat .. 6

Filter, Inlet, or Filter Silencer 3
Filter–Silencer and Dry Type Filter, Maintenance . 16
Filter–Silencer, Oil Wetted 15
Filter–Silencers and Air Filters, Maintenance 15
Foundations .. 3

Heat Exchanger .. 6
High Temperature and High Pressure Shutdown . 6

Inlet Filter or Filter Silencer 3
Inlet Piping ... 6
Inspections, Periodic 16
INSTALLATION, SECTION 2 2

Installation
 Drive ... 4
 General ... 2

Kit, Overhaul ... 22

Location ... 3
Lubricant, Recommended 14
Lubrication .. 14
 General ... 14

MAINTENANCE, SECTION 4 14
Maintenance .. 15
 Air Filters and Filter–Silencers 15
 Dry Type Filter and Filter–Silencer 16
 Oil Bath Filter .. 15
 Oil Wetted Filter–Silencer 15

Oil Bath Filter ... 15
 Maintenance .. 15
Oil Wetted Filter Silencer 15
Operating Principle 2
Operating Temperature 11

OPERATION, SECTION 3 9
Operation, General 9
Outline Dimensions, Gear End Drive 7, 8
Outline Drawings .. 6
Overhaul, Blower 17
Overhaul Kit ... 22

PARTS LIST, SECTION 5 18
 Sectional View 18, 19

Parts List, Overhaul Kit 22
Periodic Inspections 16
Piping
 Discharge ... 6
 Inlet ... 6
Prestart Check .. 9

Recommended Lubricant 14
Relief Valve ... 6
Repair Parts .. 17
Repair Parts, Ordering Instructions i
Rotation ... 9
Rotor Shaft Seals 16

Safety Devices .. 6
 Check Valve .. 6
 Relief Valve ... 6
Safety Precautions vi
Seal Installation Guide 32
INDEX

Seals, Bearing Oil ... 16
Rotor Shaft ... 16
Shutdown, High Temperature and High Pressure 6
Silencer, Discharge ... 16
Speed .. 11
Starting Blower .. 9
Startup Checklist, Blower 13
Stopping Blower ... 12
Storage .. 1
Temperature, Operating 11
Timing of Rotors .. 36
Type of Service ... 9
Pressure ... 9
Vacuum .. 10
V–Belt Drive .. 4
Valve
Bypass .. 6
Check .. 6
Relief ... 6
Ventilation ... 6
Warranty .. Last Page

YOUR KEY TO TROUBLE FREE SERVICE,
INTRODUCTION .. 1

LIST OF ILLUSTRATIONS

Figure 1 Operating Principal .. 2
Figure 2 Accessories and Safety Devices 3
Figure 3 Belt Drive Overhung Load Calculations 5
Figure 4 Outline Dimensions – Top Inlet, Main Rotor Drive 7, 8
Figure 5 Maximum Rating ... 9
Figure 6 Inlet Water Injection Diagram 10
Figure 7 Liquid Rate ... 10
Figure 8 Water Quality Requirements 10
Figure 9 Altitude – Pressure/Vacuum 11
Figure 10 Minimum Speed, Maximum Pressure or Vacuum 12
Figure 11 Recommended Lubricant 14
Figure 12 Viscosity Requirements 14
Figure 13 Oil Bath Filter .. 15
Figure 14 Oil Wetted Filter–Silencer 16
Figure 15 Dry Type Filter and Filter–Silencer 16

SECTION 6 – DISASSEMBLY

Figure 1 Adaptor Plate .. 23
Figure 2 Adaptor Plate .. 23
Figure 3 Spanner Wrench ... 23
Figure 6 Alternate Adaptor Plates 24

SECTION 7 – ASSEMBLY

Figure 5 Angular Contact Bearing Assembly 29
Figure 8 Rotor End Clearance Chart (Unit Cold) 30
Figure 13 Seal Installation Guide 32
SAFETY PRECAUTIONS
Safety is everybody’s business and is based on your use of good common sense. All situations or circumstances
cannot always be predicted and covered by established rules. Therefore, use your past experience, watch out for
safety hazards and be cautious. Some general safety precautions are given below:

⚠️ DANGER ⚠️

Failure to observe these notices could result in injury to or death of personnel.

- **Keep fingers and clothing away** from revolving sheave, drive coupling, etc.
- **Do not use the air discharge** from this unit for breathing – not suitable for human consumption.
- **Do not loosen or remove** the oil filler plug, drain plugs, covers, or break any connections, etc., in the blower air or oil system until the unit is shut down and the air pressure has been relieved.
- **Electrical shock** can and may be fatal.
- **Blower unit must be grounded** in accordance with the National Electrical Code. A ground jumper equal to the size of the equipment ground conductor must be used to connect the blower motor base to the unit base.
- **Open main disconnect switch**, tag and lockout before working on the blower.
- **Disconnect the blower** unit from its power source, tag and lockout before working on the unit – the machine may be automatically controlled and may start at any time.

⚠️ WARNING ⚠️

Failure to observe these notices could result in damage to equipment.

- **Stop the unit** if any repairs or adjustments on or around the blower are required.
- **Disconnect the blower** unit from its power source, tag and lockout before working on the unit – the machine may be automatically controlled and may start at any time.
- **Do not exceed** the rated maximum speed shown on the nameplate.
- **Do not operate unit** if safety devices are not operating properly. Check periodically. Never bypass safety devices.
INTRODUCTION
YOUR KEY TO TROUBLE FREE SERVICE

Although Gardner Denver blowers are sturdy, precision–engineered machines, there are several relatively simple but basic installation and maintenance procedures that must be observed to assure optimum performance. As there is no guesswork in the manufacture of these highly advanced units, there must be none in preparing them to get the job done in the field.

It is the purpose of this manual to help you properly install, maintain and service your Gardner Denver blower. It is important that no section be overlooked when preparing to install your blower.

Follow the instructions carefully and you will be rewarded with years of trouble–free operation.

SECTION 1
EQUIPMENT CHECK

Before uncrating, check the packing slip carefully to be sure all the parts have been received. All accessories are listed as separate items on the packing slip, and small important accessories such as relief valves can be overlooked or lost. After every item on the packing slip has been checked off, uncrate carefully. Register a claim with the carrier for lost or damaged equipment.

2. Make certain inlet and discharge air ports are tightly covered to prevent foreign material from entering the air box.
3. All exposed, non–painted surfaces should be protected against rust and corrosion.
4. Provide adequate protection to avoid accidental mechanical damage.
5. In high humidity or corrosive environments, additional measures may be required to prevent rusting of the blower internal surfaces.
6. To prevent rusting of gears, bearings, etc., the oil reservoirs may be filled with normal operating oil.

STORAGE

Your Gardner Denver Blower was packaged at the factory with adequate protection to permit normal storage for up to six (6) months.

If the unit is to be stored under adverse conditions or for extended periods of time, the following additional measures should be taken to prevent damage.

1. Store the blower in a clean, dry, heated (if possible) area.
2. Rotate the blower shaft (10 to 25 turns) monthly during storage. Inspect the blower shaft (near the shaft seal area) monthly and spray with rust inhibitor if needed.
3. For long term storage (over six (6) months), contact Peachtree City Customer Service, (770) 632–5000, for recommendations.

37–1–616 Page 1
SECTION 2
INSTALLATION

FIGURE 1 – OPERATING PRINCIPLE

GENERAL – The CycloBlower® is a compact, rotary lobe type axial flow blower. The meshing of two screw type rotors synchronized by timing gears provides controlled compression of the air for maximum efficiency and pulsation–free discharge.

OPERATING PRINCIPLE – Compression is effected by the main (2 lobe) and gate (4 flute) rotors meshing enclosed in the housing. The timing gears maintain close rotor clearances. The rotors do not touch each other, the housing, or the bearing carriers. Although clearances are small, lubrication in the compression chamber is not required, insuring oil–free air delivery.

The compression cycle (FIGURE 1) begins as the rotors unmesh at the inlet port. Air is drawn into the rotor cavities, trapped, and compressed by the reducing cavities as rotation continues. When proper compression is made, the cavities cross the discharge port, completing the cycle. The cycle occurs twice each revolution of the main rotor and is continuous.

CONSTRUCTION – All models of the 11CDL–P Series CycloBlower® are of similar design and construction except for rotor length. The housing is a one–piece casting with flanged inlet and discharge openings.

Main rotors and the 11CDL23P Gate Rotor are ductile iron with an integral cast shaft.

Model 11CDL27P and 11CDL31P Gate Rotors are ductile iron with pressed in steel shaft.

Rotors are dynamically balanced to minimize vibration.

Helical timing gears are of alloy steel, hobbed and shaved for quiet operation.

Two heavy–duty duplex mounted angular contact ball bearings are used on each rotor shaft, at the discharge end, as fixed bearings to maintain rotor end clearance.

A radial bearing is used on each rotor shaft at the gear end as a floating bearing.

All gears and bearings are oil splash lubricated.

Standard construction is top inlet, bottom discharge, with drive shaft extension from main rotor at the discharge end. Rotation is clockwise facing the drive shaft. Blowers may be mounted for either V–belt or direct–coupled drive. The gate rotor speed is half (1/2) the main rotor or drive speed.
LOCATION – Select a clean, dry, well-ventilated area for installing blower and allow ample room for normal maintenance. Proper ventilation is necessary for blower cooling and cool air intake.

WARNING

Do not electric weld on the blower or base; bearings can be damaged by the passage of current.

FOUNDATIONS – Correct supporting is important. Distortion by incorrect supporting will affect internal operating clearances. The foundation or base must provide a level, rigid, nonworking support for the blower. It must be on uniform and solid footing. Complete foundation design cannot be given because of varying conditions. If necessary, use shims under feet for leveling to prevent distortion when foundation bolts are tightened. After installation on the foundation is complete, check alignment of the coupling or drive before starting blower.

ACCESSORIES (FIGURE 2) – The type of service determines the accessory group required. The typical items are listed as follows:

1. Inlet Filter or Filter–silencer.
2. Flexible Coupling.
3. Driver.
4. Simple V–Belt Drive.
5. Jackshaft V–Belt Drive.
7. Check Valve.
8. Relief Valve, Vacuum or Pressure.
11. Expansion Joint(s) – Inlet and/or Discharge.
12. Temperature or Pressure Shutdown Switch.
13. Check Valve (Inlet Bypass).
15. Bypass to atmosphere (alternate).
16. Pressure Gauge or Vacuum Gauge.

Inlet Filter or Filter–Silencer – For pressure service handling air, the blower inlet must be protected by a
filter of suitable size to allow full flow of air to the blower inlet. The filter must be of adequate efficiency to trap any foreign materials which may be in the general area of the air inlet. If noise is a factor, filter–silencers are available.

WARNING

Rotating components will cause severe injury in case of personal contact. Keep hands away from the blower inlet and discharge ports.

In choosing a location for the filter, consideration should be given to a source of cool, clean air, and most important, access for maintenance.

Filters generally used for blower service fall under three types:

- Oil–wetted Screen Type
- Oil Bath
- Dry Type

Filter–silencers are also available in the above types.

For vacuum service, the type of system used and materials being handled will determine the necessity for an in–line filter.

Couplings — For direct–coupled units, a flexible type coupling, accurately aligned, should be used between the blower and power unit. Misaligned couplings may cause vibration, additional bearing loads and stresses which will affect life of parts involved. DO NOT drive the couplings on the shaft. Check shaft and coupling bore for burrs. Polish the shaft and bore if necessary for proper fit. Fit keys to keyways. Check coupling alignment. Exact alignment will vary with the type of couplings; however, it is not uncommon to hold alignment within .003” in all directions. With lubricated or special couplings, follow the manufacturer’s instructions for installation and maintenance.

DRIVE INSTALLATION

V–Belt Drive — Follow normal specifications recommended by the belt manufacturers for installation of belt drives on blowers. To provide the most compact drive, it is suggested the high capacity V–belt drives be used. Blower shaft and power unit shaft should be parallel, with sheaves aligned on shafts so belts run true. Use only matched belt sets and replace belts in complete sets only. Belt tension should be according to manufacturer’s recommendations. Slippage can be detected by belt squeal, overheating or loss of speed. A few hours after initial starting with new belts, it is advisable to recheck belt tension and provide tension adjustment as necessary.

WARNING

Overtightening belts leads to heavy bearing loads and premature failure.

When selecting a V–belt drive, check to be sure the maximum allowable moment limitation is not exceeded. Refer to FIGURE 3, page 5, for belt drive overhung load calculations.

NOTICE

When a simple V–belt drive is not available, to stay within the maximum allowable moment, a jackshaft V–belt drive is required.

Belt drives must be carefully aligned. Motor and blower pulleys must be parallel to each other and in the same plane within 1/16 inch. Belt tension should be carefully adjusted and belts tightened only enough to prevent slippage.

NOTICE

The sheave should be positioned as close as possible to the drive cover. This will reduce the overhung load and extend the bearing life.

On direct connected units, alignment and lubrication of the couplings to specifications of the coupling manufacturer are very important. When mounted drives are supplied from the factory, proper alignment has been established before shipment. However, during shipping, handling and installation, it is likely that the alignment has been disturbed and final adjustment must be made before startup.
FIGURE 3 – BELT DRIVE OVERHUNG LOAD CALCULATIONS

<table>
<thead>
<tr>
<th>11CDL Drive Shaft Location</th>
<th>Dimensions (Inches)</th>
<th>Maximum Allowable Moment (LB–IN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Discharge End (Standard)</td>
<td>12.70</td>
<td>5.05</td>
</tr>
<tr>
<td>Gear End (Optional)</td>
<td>14.65</td>
<td>6.87</td>
</tr>
</tbody>
</table>

MAXIMUM ALLOWABLE MOMENT

<table>
<thead>
<tr>
<th>Z</th>
<th>Ac</th>
<th>Z</th>
<th>Ac</th>
<th>Z</th>
<th>Ac</th>
<th>Z</th>
<th>Ac</th>
<th>Z</th>
<th>Ac</th>
<th>Z</th>
<th>Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>0.250</td>
<td>0.966</td>
<td>0.500</td>
<td>0.926</td>
<td>0.750</td>
<td>0.879</td>
<td>1.000</td>
<td>0.823</td>
<td>1.250</td>
<td>0.751</td>
</tr>
<tr>
<td>0.025</td>
<td>0.997</td>
<td>0.275</td>
<td>0.962</td>
<td>0.525</td>
<td>0.922</td>
<td>0.775</td>
<td>0.874</td>
<td>1.025</td>
<td>0.816</td>
<td>1.275</td>
<td>0.742</td>
</tr>
<tr>
<td>0.050</td>
<td>0.994</td>
<td>0.300</td>
<td>0.958</td>
<td>0.550</td>
<td>0.917</td>
<td>0.800</td>
<td>0.869</td>
<td>1.050</td>
<td>0.810</td>
<td>1.300</td>
<td>0.734</td>
</tr>
<tr>
<td>0.075</td>
<td>0.990</td>
<td>0.325</td>
<td>0.954</td>
<td>0.575</td>
<td>0.913</td>
<td>0.825</td>
<td>0.864</td>
<td>1.075</td>
<td>0.803</td>
<td>1.325</td>
<td>0.725</td>
</tr>
<tr>
<td>0.100</td>
<td>0.987</td>
<td>0.350</td>
<td>0.951</td>
<td>0.600</td>
<td>0.908</td>
<td>0.850</td>
<td>0.858</td>
<td>1.100</td>
<td>0.796</td>
<td>1.350</td>
<td>0.716</td>
</tr>
<tr>
<td>0.125</td>
<td>0.983</td>
<td>0.375</td>
<td>0.947</td>
<td>0.625</td>
<td>0.904</td>
<td>0.875</td>
<td>0.852</td>
<td>1.125</td>
<td>0.792</td>
<td>1.375</td>
<td>0.706</td>
</tr>
<tr>
<td>0.150</td>
<td>0.980</td>
<td>0.400</td>
<td>0.943</td>
<td>0.650</td>
<td>0.899</td>
<td>0.900</td>
<td>0.847</td>
<td>1.150</td>
<td>0.782</td>
<td>1.400</td>
<td>0.697</td>
</tr>
<tr>
<td>0.175</td>
<td>0.977</td>
<td>0.425</td>
<td>0.939</td>
<td>0.675</td>
<td>0.894</td>
<td>0.925</td>
<td>0.841</td>
<td>1.175</td>
<td>0.774</td>
<td>1.425</td>
<td>0.687</td>
</tr>
<tr>
<td>0.200</td>
<td>0.973</td>
<td>0.450</td>
<td>0.935</td>
<td>0.700</td>
<td>0.889</td>
<td>0.950</td>
<td>0.835</td>
<td>1.200</td>
<td>0.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.225</td>
<td>0.969</td>
<td>0.475</td>
<td>0.930</td>
<td>0.725</td>
<td>0.884</td>
<td>0.975</td>
<td>0.829</td>
<td>1.225</td>
<td>0.759</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRIVE SHAFT ILLUSTRATION

ARC OF CONTACT FACTORS

Belt Pull = \[\left(0.5 - \frac{Ac}{Z} \right) \times \frac{125954 \times Hp \times S.F.}{D \times RPM} \]

Key:
- Ac = Arc of Contact Factor (Refer to Arc of Contact Factors Chart above)
- Hp = Blower Horsepower for Operating Conditions
- S.F. = Drive Service Factor (use 1.4 S.F. for continuous duty applications)
- D = Blower Sheave Pitch Diameter in Inches
- RPM = Blower Sheave Speed
- Z = Large Sheave Pitch Diameter (in) – Small Sheave Pitch Diameter (in)
 - Sheave Center Distance (in)

CALCULATION OF BELT PULL

Shaft Moment (LB–IN) = Belt Pull \[x \left(B + C + \left(\frac{\text{Sheave Width}}{2} \right) \right) \]

CALCULATION OF SHAFT MOMENT

FIGURE 3 – BELT DRIVE OVERHUNG LOAD CALCULATIONS
Bypass Valve – Installation of a bypass valve at the blower discharge (FIGURE 2, page 3) will allow the blower to be started under no-load. Bypass line may be discharged to atmosphere or to blower inlet depending on local requirements or material being handled.

Heat Exchanger – When the bypass line discharges to blower inlet, a heat exchanger must be included in the line between blower discharge and blower inlet, to remove the heat of compression before the gas is reintroduced into the blower inlet. A check valve (FIGURE 2, page 3) should also be placed in the inlet line between the bypass line and the inlet filter or silencer, to prevent discharging backwards through the filter or silencer.

SAFETY DEVICES – For all installations the following safety devices are a requirement for safe blower operation. Numbers shown are reference numbers used in FIGURE 2, page 3.

7. Check Valve, Blower Discharge Line
8. Relief Valve, Vacuum or Pressure
12. High Discharge Air Temperature Switch

Check Valve (FIGURE 2, page 3) – When the blower is used in a pneumatic conveying system, a check valve must be used to prevent backflow of materials into the blower. In any system it is a safety device preventing the downstream pressure from motoring the blower through shutdown periods. A check valve must be provided for each blower when several blowers are manifolded into a common system.

Relief Valve (FIGURE 2, page 3) – The relief valve must be installed as close to blower ports as possible. There should be no accessories such as valves, check valves, silencers, etc. between the relief valve and blower ports. It should be set 2 to 3 PSI above blower operating pressure (1/2" to 1" Hg. in vacuum service).

INLET PIPING – During the installation of piping make sure dirt and other foreign materials do not enter blower openings. When inlet piping is used IT MUST BE CLEAN, AND FREE OF SCALE AND OTHER FOREIGN MATERIALS WHICH COULD ENTER THE BLOWER. It is suggested that an expansion joint be installed near blower openings to prevent stressing of the blower housing. Support the pipe to relieve weight on the expansion joint and the blower. Make sure the pipe size is adequate and as straight as possible to prevent pressure drop at the blower inlet. Where bends are necessary use long radius fittings. All connections must be air tight.

For vacuum service, an accurate vacuum gauge must be used near the blower inlet to indicate operating vacuum, and a suitable vacuum relief valve must be used. A vacuum blower in pneumatic conveying service requires pre–inlet separation and filtering to prevent material carry-over into the blower.

Inlet pipe size is determined as follows:

- 0 to 10 feet long, use pipe size equal to blower inlet flange size
- 10 to 17 feet long, one pipe size larger than blower inlet
- 17 to 33 feet long, two pipe sizes larger than blower inlet.

DISCHARGE PIPING – In general, the type system used will govern the piping arrangement. However, the following suggestions should be followed for blower protection and efficiency.

An expansion joint should be installed as close to the blower opening as possible to protect the blower housing from stresses. All pipe connections should be square and even to prevent distortion from misalignment.

An accurate pressure gauge must be provided near the blower discharge to indicate operating pressure. If noise level is a factor, a discharge silencer should be used. The discharge line should be as straight as possible. Where bends are necessary, use long radius fittings. Provision for condensate drainage at the lowest point in the piping may be required.

VENTILATION – If the blower is to operate in a housing or enclosure, proper ventilation must be provided for adequate blower cooling. Cooling air should be taken from outside the enclosure.

OUTLINE DRAWINGS – Certified outline drawings are available upon request. All important dimensions are shown in FIGURE 4, pages 7 and 8.
11CDL SERIES, TOP INLET, MAIN ROTOR DRIVE

FIGURE 4 – OUTLINE DIMENSIONS – TOP INLET, MAIN ROTOR DRIVE
11CDL SERIES, TOP INLET, MAIN ROTOR DRIVE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>WT.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>OUTLINE DIMENSIONS DRAWING NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11CDL23P</td>
<td>3175</td>
<td>53.38</td>
<td>19.56</td>
<td>22.00</td>
<td>40</td>
<td>203CBT800</td>
</tr>
<tr>
<td>11CDL27P</td>
<td>3420</td>
<td>57.25</td>
<td>20.00</td>
<td>22.44</td>
<td>44</td>
<td>202CBT800</td>
</tr>
<tr>
<td>11CDL31P</td>
<td>3585</td>
<td>61.25</td>
<td>18.00</td>
<td>28.44</td>
<td>48</td>
<td>300CBT800</td>
</tr>
</tbody>
</table>

FIGURE 4 – OUTLINE DIMENSIONS (CONTINUED)
SECTION 3
OPERATION

Future operating problems can be avoided if proper precautions are observed when the equipment is first put into service.

Before starting under power, the blower should be turned over by hand to make certain there is no binding, or internal contact.

Each size blower has limits on pressure differential, running speed, and discharge temperature which must not be exceeded. These limits are shown in the following tabulation.

GENERAL – A new blower from the factory must be checked and serviced before operation. The blower must be lubricated and operated according to the following instructions. Blower failure can be caused by operation at above rated pressure or below rated minimum speed. Both cause excessive discharge temperature and seizure of rotating parts.

STARTING BLOWER – Start at reduced speed and no–load if possible. If speed is fixed, start without load by bleeding discharge to atmosphere. Starting should be smooth and free of vibrations. After initial no–load start, and operation is satisfactory, apply load gradually until maximum operating conditions are attained. BE SURE OPERATING CONDITIONS ARE WITHIN BLOWER RATINGS. Maintain a close check for severe vibrations, unusual noise, leaks and undue heating. The blower will gradually heat up due to compression, but after a reasonable length of time, temperature will stabilize. With very cold ambient conditions, warm up blower at no–load before going into full load service.

If the blower is used as part of a specific system, check the system’s manual for any procedures that may be necessary when starting the blower.

PRESTART CHECK (For New or Overhauled Blower) – see “Blower Startup Checklist,” page 13.

ROTATION – Facing the main rotor drive shaft, rotation is clockwise when the shaft extension is at discharge end, and counterclockwise when the shaft extension is at the inlet end. An arrow indicating rotation is attached to the blower end cover near the drive shaft.

DAILY CHECK
1. Air filter tight, clean and serviced.
2. Proper oil level in oil sumps.
3. Observe pressure.
4. Relief valve functions.
5. Blower turns freely.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating beyond the specified operating limitations will result in damage to the unit.</td>
</tr>
</tbody>
</table>

TYPE OF SERVICE – The blower can be operated in either pressure or vacuum service.

Pressure – Never operate the blower above the maximum pressure shown in FIGURE 5. Excessive pressure may cause overheating and blower failure; it is therefore most important to have an accurate pressure gauge in the discharge line as close to the blower as possible.

<table>
<thead>
<tr>
<th>P Drive Shaft Models</th>
<th>Discharge Pressure*</th>
<th>Dry Vacuum*</th>
<th>Wet Vacuum*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sea Level (PSIG)</td>
<td>(Inches Hg.)</td>
<td>(Inches Hg.)</td>
</tr>
<tr>
<td>11CDL23, 11CDL27, 11CDL31</td>
<td>2200</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>11CDL23, 11CDL27, 11CDL31</td>
<td>2000</td>
<td>17</td>
<td>24</td>
</tr>
</tbody>
</table>

* Pressures or vacuums are gauged at immediate blower discharge or inlet. For suggested maximum ratings at reduced speeds, see FIGURE 10, page 12.

FIGURE 5 – MAXIMUM RATING
discharge as possible. Reduced speeds have a direct bearing on allowable pressure (FIGURE 10, page 12). A bypass valve to bleed air from the discharge to atmosphere (FIGURE 2, page 3) may be used to control the pressure. NEVER reduce the blower speed to maintain a certain pressure before it is determined if the reduced speed is adequate for that pressure. An accurate pressure gauge must be maintained.

Vacuum – The blower may be operated either in dry vacuum or wet vacuum service. Do not operate the blower above the maximum vacuums shown in FIGURE 5, page 9, or below the minimum speeds shown in FIGURE 10, page 12. All vacuum ratings are based on standard atmospheric discharge. An accurate vacuum gauge and vacuum relief valve must be used as close to the blower inlet as possible.

Wet vacuum service employs a suitable liquid, normally water, injected into the system near the blower inlet to control temperature rise and increase the degree of vacuum developed. The liquid used MUST BE clean and free of foreign matter, chemical contaminants and hardness, which may cause corrosion, deposits, or damage in the rotor chamber. See FIGURE 6, for typical installation and FIGURE 8, for water quality requirements. If the proposed water supply is questionable, or does not meet the water specification, a

<table>
<thead>
<tr>
<th>Liquid Rate (GPM)</th>
<th>11CDL23</th>
<th>11CDL27</th>
<th>11CDL31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

FIGURE 7 – LIQUID RATE

FIGURE 8 – WATER QUALITY REQUIREMENTS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH Range at 25° C</td>
<td>6.5 – 8.0</td>
<td></td>
</tr>
<tr>
<td>Conductivity at 25° C</td>
<td>Less than 250</td>
<td></td>
</tr>
<tr>
<td>Total hardness as CaCO₃</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td>Total Alkalinity as CaCO₃</td>
<td>Less than 70</td>
<td></td>
</tr>
<tr>
<td>Chloride ion; Cl⁻</td>
<td>Less than 30</td>
<td></td>
</tr>
<tr>
<td>Sulfate ion SO₄²⁻</td>
<td>Less than 50</td>
<td></td>
</tr>
<tr>
<td>Total iron; Fe</td>
<td>Less than 0.3</td>
<td></td>
</tr>
<tr>
<td>Silica; SiO₂</td>
<td>Less than 20</td>
<td></td>
</tr>
<tr>
<td>Sulfide ion S²⁻</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ammonium ion; NH₄⁺</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Altitude (Feet above Sea Level) | Maximum Discharge Pressure* | Maximum Inlet Vacuum*
---|---|---
1000 | 19.3 PSIG | 16.4 Inches Hg.
2000 | 18.6 PSIG | 15.8 Inches Hg.
3000 | 17.9 PSIG | 15.3 Inches Hg.
4000 | 17.3 PSIG | 14.7 Inches Hg.
5000 | 16.7 PSIG | 14.2 Inches Hg.

* Gauge readings are taken as close as possible to blower openings. Above 5000 feet, consult the nearest Gardner Denver Office.

FIGURE 9 – ALTITUDE – PRESSURE/VACUUM

reputable water treatment service company should be contacted. They can recommend treatment and equipment to satisfy this specification.

If the injection water supply is allowed to run after blower shutdown, both the blower and adjacent discharge piping may fill with water and present a serious overload problem at the next attempted start. To prevent this, it is strongly recommended that an electric solenoid valve (normally open) be installed at the lowest point in the discharge elbow and/or connecting piping. The valve will open on blower shutdown and drain any water which might accumulate in the discharge piping. It is also recommended that a time delay be used between injection water shutoff and blower/motor shutdown to allow the interior of the blower to dry out prior to shutdown. Up to five minutes time delay may be required for larger blowers running under no load.

On wet vacuum service, temperature control and a minimum amount of rotor sealing is obtained with small quantities (1 gallon per minute) of injected liquid. Best performance is attained by using the amount of injected liquid that maintains the discharge air temperature in the range of 100° to 150° F.

The maximum permissible liquid rate on any size machine is shown in FIGURE 7, page 10. DO NOT EXCEED THIS.

In applications where liquid carry-over from the upstream system may exceed these quantities, even for momentary periods, separation prior to blower inlet must be employed to reduce water flow to this figure or less.

Where inlet injection of water is used, it may be introduced in any convenient manner. No particular water pressure is required, only that sufficient to deliver the water to the injection point. A reliable metering device, such as a rotameter, to indicate water injection rate is supplied.

Since water injection is used primarily for discharge temperature reduction and control, overheating will occur with water shutoff or supply failure. Provisions against inadvertent water shutoff should be incorporated in every water-injected blower system.

A high discharge temperature safety shutdown switch should be used to protect the blower.

Individual system requirements will determine whether downstream (discharge side) separation of injection water may be required. Combination discharge silencers and separators are available.

See Engineering Data Sheet 37–1–432, for complete wet vacuum details.

ALTITUDE – Maximum allowable discharge pressure and/or inlet vacuum will be decreased with operation at altitudes. See FIGURE 9.

SPEED – Refer to FIGURE 5, page 9, for maximum and FIGURE 10, page 12 for minimum speeds. Never operate the blower below the minimum or above the maximum speed shown. There is a definite relationship between blower speed, discharge pressure and/or inlet vacuum, and the resulting discharge air temperature. Reduced speed at high pressure or vacuum can cause excessive heating which may result in rapid blower failure. For engine-driven units provide an accurate speed indicator.

Examples of minimum allowable speed at given pressures or vacuums are listed in FIGURE 10, page 12; as speed is reduced, pressure or vacuum must also be reduced.

EXAMPLE: Using an 11CDL27 blower, operating against 20 PSIG, minimum allowable speed is 1050 RPM.

NOTICE

Blower speed, line losses, elevation, and increased inlet temperatures will affect the maximum operating limitations.

OPERATING TEMPERATURE – Blower air discharge temperature will increase with higher operating pressures or vacuums. Maximum allowable discharge temperature is 355° F.
If the discharge temperature continues to exceed 355°F, stop the blower at once and correct the trouble.

\[\text{WARNING} \]

Do not continue to run a blower that is overheating. Check the blower for damage before restarting.

Lubricating oil temperature will increase with increasing discharge air temperature. Oil temperature in the discharge end sump will exceed that in the inlet end sump. Oil sump temperatures at the discharge end in the 200–250°F range are not uncommon.

STOPPING BLOWER – Where possible, reduce the system pressure to zero gauge before stopping the blower. To prevent backflow of foreign material into the blower on shutdown, provide a check valve in the discharge line.

On engine-driven units, idle the engine for a few minutes prior to shutdown.

EMERGENCIES – In event of system failures, shut down the blower immediately. Inspect the blower for foreign material backflow. If materials are found inside the blower housing, a thorough cleaning is necessary before restarting.

\[\text{WARNING} \]

Do not operate a blower which is noisy, vibrating, or heating excessively.

<table>
<thead>
<tr>
<th>Models</th>
<th>Minimum Speed (RPM) – Dry Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up To 15 PSIG</td>
</tr>
<tr>
<td>11CDL23</td>
<td>800</td>
</tr>
<tr>
<td>11CDL27</td>
<td>800</td>
</tr>
<tr>
<td>11CDL31</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Models</th>
<th>Minimum Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Vacuum</td>
</tr>
<tr>
<td></td>
<td>Up To 17” Hg.</td>
</tr>
<tr>
<td>11CDL23</td>
<td>840</td>
</tr>
<tr>
<td>11CDL27</td>
<td>900</td>
</tr>
<tr>
<td>11CDL31</td>
<td>800</td>
</tr>
</tbody>
</table>

FIGURE 10 – MINIMUM SPEED, MAXIMUM PRESSURE OR VACUUM
BLOWER STARTUP CHECKLIST

This startup procedure should be followed during the initial installation and after any shutdown periods or after the blower has been worked on or moved to a new location. It is suggested that the steps be followed in sequence and checked off (✓) in the boxes provided.

1. Check the unit and all piping for foreign material and clean if required.

2. Check the flatness of the feet and the alignment of the drive. Feet that are bolted down in a bind can cause housing distortion and internal rubbing. Misaligned V–drives can cause the rotors to rub against the headplates and cause a reduction in the volumetric efficiency of the unit. Misaligned couplings can ruin bearings.

3. If the blower is V–belt driven, check the belt tension and alignment. Over–tensioned belts create heavy bearing/shaft loads which lead to premature failure.

4. Be sure adequate drive guards are in place to protect the operator from severe personal injury from incidental contact.

5. Check the unit for proper lubrication. Proper oil level cannot be over–emphasized. Too little oil will ruin bearings and gears. Too much oil will cause overheating and can ruin gears and cause other damage. Insure that grease lubricated bearings are properly lubricated.

6. Turn the driveshaft by hand to be certain the rotors do not bind.

7. “Jog” the unit with the motor a few times to check that rotation is in the proper direction, and to be certain it turns freely and smoothly.

8. Start the unit and operate 15 minutes at no load. During this time, check for hot spots and other indications of interference.

9. Apply the load and observe the operation of the unit for one hour. Check frequently during the first day of operation.

10. If malfunctions occur, do not continue to operate. Problems such as knocking rotors can cause serious damage if the unit is operated without correction.
SECTION 4
MAINTENANCE

GENERAL – Blower efficiency and life depend on the quality of maintenance the blower receives. Maintenance must be done regularly and with care. Clean work space, tools, solvents and wiping rags are necessary to avoid transferring dirt into the unit. A maintenance chart listing each blower and scheduling regular maintenance of the unit is valuable. A good program, well carried out, will insure long trouble–free service from the blower.

LUBRICATION – Gears and bearings are splash lubricated. The discharge end sump requires 15–3/4 quarts and the gear end sump requires 8–1/2 quarts of oil. Filling with this amount of oil will bring the oil level to about the middle of the sight gauge. Add more oil if necessary to bring the level to the middle. DO NOT OPERATE THE BLOWER UNLESS OIL LEVEL IS AT THE MIDDLE OF THE SIGHT GAUGE. Do not overfill. Oil is added through the oil fill hole at the top of each bearing carrier.

RECOMMENDED LUBRICANT – AEON PD Synthetic Blower Lubricant is recommended. Refer to FIGURE 11 for AEON PD part numbers.

AEON PD is formulated especially for positive displacement blower service to provide maximum blower protection at any temperature. One filling of AEON PD will last a minimum of 4 times longer than a premium mineral oil, depending on actual operating conditions. Order AEON PD from your Gardner Denver distributor or call Gardner Denver directly at 800–245–4946.

<table>
<thead>
<tr>
<th>Blower Discharge Temperature</th>
<th>Factory Tested Recommended and Approved Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>° F</td>
<td>° C</td>
</tr>
<tr>
<td>32°</td>
<td>0°</td>
</tr>
<tr>
<td>100°</td>
<td>38°</td>
</tr>
<tr>
<td>275°</td>
<td>135°</td>
</tr>
<tr>
<td>350°</td>
<td>177°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blower Discharge Temperature</th>
<th>Factory Tested Recommended and Approved Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEON PD</td>
<td>1 Qt. Bottle Part No. 28G23</td>
</tr>
<tr>
<td>AEON PD</td>
<td>12 Qt. Case Part No. 28G24</td>
</tr>
<tr>
<td>AEON PD</td>
<td>5 Gal. Pail Part No. 28G25</td>
</tr>
<tr>
<td>AEON PD</td>
<td>55 Gal. Drum Part No. 28G28</td>
</tr>
</tbody>
</table>

FIGURE 11 – RECOMMENDED LUBRICANT

Ref. Viscosity at 104° F	Viscosity Grade
Cold Weather Operation: | |
10° F. to 32° F. Ambient | 417–510 SUS ISO 100 |
Warm Weather Operation: | |
32° F. to 90° F. | 625–765 SUS ISO 150 |
Warm Weather Operation: | |
90° F. Ambient | 918–1122 SUS ISO 220 |

NOTES:
1. Napthenic base lubricants are not recommended.
2. For operation at ambient temperatures below 10° F., the use of oil sump heaters or synthetic lubricants is recommended. The pour point of the lubricant should be at least 5° F. to 10° F. below the minimum expected ambient temperature.
3. For continuous operation where oil sump temperatures exceed 200° F., use AEON PD Synthetic Blower Lubricant.

FIGURE 12 – VISCOSITY REQUIREMENTS
If not using AEON PD synthetic blower lubricant, use turbine quality oils with rust and oxidation inhibitors, anti-foam additives and the viscosities listed in FIGURE 12, page 14.

Check the oil level at both ends of the blower daily. The oil change period is governed by operating conditions, such as load, temperature, dirt, humidity, fumes and the quality of the oil used. Under severe operating conditions the oil should be changed every 100 hours or more often. Under ideal operating conditions oil may be used up to 1000 hours. Use of AEON PD could extend the change interval up to 8000 hours based on a good oil analysis program. Good practice is to change the oil often enough that it appears clean and clear when drained from the sump. Oil sumps should be flushed with a clean solvent every fourth oil change. ALWAYS USE CLEAN CONTAINERS FOR OIL AND CLEANING SOLVENTS.

MAINTENANCE

AIR FILTERS AND FILTER–SILENCERS

WARNING

Servicing the air filters is one of the most important maintenance operations to be performed to insure long blower life.

Servicing frequency of filter elements is not time predictable. A differential pressure indicator, with a continuous gauge reading, should be installed across the inlet filter. It will tell how much of the service life of the filter element has been used. It will also eliminate both premature filter servicing and premature blower failure due to a plugged filter when the filter pressure drop is used to establish maintenance points.

In all cases refer to the filter manufacturer’s service instructions. Due to the many types of filters, it is not practical to give specific instructions covering all models; however, the following paragraphs describe some of those most commonly used.

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>OIL USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>–20°F to 0°F</td>
<td>Mixture of 2/3 SAE 10W</td>
</tr>
<tr>
<td></td>
<td>and 1/3 Diesel Fuel</td>
</tr>
<tr>
<td>0°F to 30°F</td>
<td>SAE 10W</td>
</tr>
<tr>
<td>30°F to 50°F</td>
<td>SAE 20</td>
</tr>
<tr>
<td>50°F to 110°F</td>
<td>SAE 30</td>
</tr>
<tr>
<td>110°F to 112°F</td>
<td>SAE 50</td>
</tr>
</tbody>
</table>

Oil Bath Filter (FIGURE 13) – The following instructions also apply when the filter is equipped with a silencing chamber:

1. Remove cover, screen and bowl from the base.
2. Wash the screen and bowl.
3. Fill the bowl to oil level bead with oil listed.
4. Place the end of the screen bonded with felt down into the oil. Upside–down installation will result in heavy oil carryover.
5. Replace the cover and tighten wing nut securely.
6. Make sure all connections to the air filter are tight.

Oil Wetted Filter–Silencer (FIGURE 14, page 16) – Cleaning of the filtering media is accomplished by thoroughly washing in a commercial solvent and blowing dry with air. Blow from inside to outside to dislodge dirt particles from the finer screen sections. After the media is cleaned, recharge by dipping in oil. The filter–silencer can be supplied with an all–weather hood. If an oil wetted filter without silencer is used, the service instructions in the previous section will also apply.
Dry Type Filter and Filter–Silencer (FIGURE 15) – When the outside surface of the element appears to be evenly coated with dirt, it should be cleaned as follows:

1. Remove wing nuts and lift off the hood.
2. Loosen the outside retaining strap to remove the media.
3. Vibrate or blow off heavy dirt accumulation.
4. If required, wash the media in any carbon base commercial solvent and blow off the excess solvent.
5. Allow to dry and examine for damage or conditions requiring replacement.

Because the media in the dry type filter is of wool felt, it may become impregnated with oil or water, if present in any large degree. Corrosive gases may also attack the media. While such conditions are not common, they should be kept in mind.

DISCHARGE SILENCER – A drain may be provided in the silencer at the lowest point for draining condensate. Draining intervals will depend upon humidity conditions and must be established by the user.

ROTOR SHAFT SEALS – Rotors have a labyrinth type shaft air seal to minimize air leakage along the shaft from the compression chamber. More air will leak through the seals at the discharge end since they are under higher air pressure. Excessive air leakage indicates shaft seal failure.

The air seal consists of two parts, a hardened steel bearing spacer with grooves cut into the outside diameter, and a steel–backed babbitt ring (shaft seal) pressed into the bearing carrier. The grooved end of the spacer and the shaft seal bore have a close fit when cold. When the blower reaches operating temperature for the first time, the babbitt embeds slightly into the grooves, forming a close running fit to control air leakage along the shaft. No maintenance is required, except that bearing carrier removal usually will destroy the babbitt grooving and the shaft seal must be replaced. Shaft seals that have been in operation should not be reused as excessive leakage may result. The bearing spacer can be reused unless damaged. After installation of new seals, rotation of the blower may be tight for a few turns until bearing spacer grooves cut running ways into the babbitt. For seal replacement refer to Disassembly Section, page 23, and Assembly Section, page 27.

BEARING OIL SEALS – Oil leakage along each shaft from the oil sumps is prevented by a lip type seal pressed into the bearing carrier. These seals are unidirectional lip seals. The hydrodynamic spiral in the Teflon lip pumps the oil back into the sump. Usual causes of seal failure are: high temperature, rough surface on bearing spacer, damage during installation, and improper seal used. The radius at the end of the bearing spacer and O.D. should be highly polished to prevent seal lip damage during installation. Use only seals shown in parts list as they have been selected for blower service. They must be installed in the correct location and with the proper orientation or the oil will be pumped out of the sump. Rotation arrows and color coding are used to distinguish clockwise seals from counterclockwise seals, see FIGURE 13, page 32.

PERIODIC INSPECTIONS – A well–organized maintenance program will provide for periodic inspection of
the blower, drive and components. These inspections may prevent major repair and downtime.

1. Observe the blower for vibration, heating, noise, oil seal leaks and excessive shaft air leaks.

2. Check for proper operation of the filters, coupling, drive, power unit, relief and check valves, gauges and other controls.

3. Disconnect the drive and turn the blower by hand to check for drag, tight spots, bearing wear (radial and axial) and gear backlash. Rotation should be free with no indication of drag or metallic interference.

4. Inspect the interior through the inlet or discharge port for cleanliness, corrosion or parts contact.

5. Check tightness of all screws and bolts.

WARNING

Rotating components will cause severe injury in case of personal contact. Keep hands away from the blower inlet and discharge ports.

SOME COMMON CAUSES OF BLOWER FAILURE

1. Poor air filter maintenance or incorrect selection.

2. Inadequate lubrication (wrong, dirty or low oil).

3. Backflow of materials into the blower.

4. Discharge pressure or inlet vacuum above blower rating.

5. Blower speed below minimum rating.

6. Blower speed too low for discharge pressure or inlet vacuum.

BLOWER OVERHAUL – Refer to Disassembly Section, page 23, and Assembly Section, page 27.

REPAIR PARTS – When ordering parts, specify Blower Model, Size and Serial Number. All parts orders should be placed with MDC.

Reference numbers shown in the left hand column of the parts list are used to help locate the parts shown on the drawing and sectional view. DO NOT ORDER BY REFERENCE NUMBERS.

After locating the reference number, the part number may be found for your particular blower under the correct Model Number Column.

Specify exactly the number of parts required (see column “Qty.”). DO NOT ORDER BY SETS.

Teflon is a registered trademark of DuPont
SECTION 6
DISASSEMBLY INSTRUCTIONS

FIGURE 1 – ADAPTOR PLATE

FIGURE 2 – ADAPTOR PLATE

NOTICE

Numbers in parentheses () refer to key numbers in assembly drawings on pages 18, 19, 20 and 21.

WARNING

Pulling directly on the gear hub flange will distort the flange causing gear run–out.

1. Provide adaptor plate, FIGURE 1, for pulling the gear hub (11) and for installation of the inlet end gate rotor bearings (37) on the shaft.

2. Provide adaptor plate, FIGURE 2, for pulling the pinion (9) and for installation of the bearings at the other three positions.

FIGURE 3 – SPANNER WRENCH

FIGURE 4

Shaft Protector
3. Place the unit in a horizontal position on a solid blocking so the gear end bearing carrier (5) hangs free. Remove the breathers (44) and drain oil from both carriers. At the gear end, remove the cover (19), hub retainer plate (7), gear (9) (slip fit on the hub) and pinion lock nut (41). It is suggested that a spanner wrench similar to that shown in FIGURE 3, page 23 be made to prevent damage to the lock nut. The wrench is especially useful at assembly in saving time and, more important, assures proper tightening of the nuts.

4. Mount the adaptor plate and puller (FIGURE 4, page 23), and pull the pinion (10). Be sure to use a shaft protector to prevent damage to the end of the shaft. Remove the key from the shaft.

5. Mount the adaptor plate and puller (FIGURE 5), and pull the gear hub (11). Use a shaft protector. Remove the key from the shaft.

6. If a hydraulic puller is not available, the hub and pinion may be pulled as shown in FIGURE 6.

<table>
<thead>
<tr>
<th>PINION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O.D.</td>
<td>7\text{–}3/4\text{"}</td>
</tr>
<tr>
<td>B.C.</td>
<td>6\text{–}1/8\text{"}</td>
</tr>
<tr>
<td>Holes</td>
<td>(3) 9/16\text{"}</td>
</tr>
<tr>
<td>Stud</td>
<td>1/2" – 13 UNC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEAR HUB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O.D.</td>
<td>7\text{–}1/4\text{"}</td>
</tr>
<tr>
<td>B.C.</td>
<td>5\text{–}1/2\text{"}</td>
</tr>
<tr>
<td>Holes</td>
<td>(5) 9/16\text{"}</td>
</tr>
<tr>
<td>Stud</td>
<td>1/2" – 13 UNC</td>
</tr>
</tbody>
</table>

FIGURE 5. Other type pullers are available, and if used, suitable adaptor plates should be provided. This method is highly recommended as it saves assembly time and eliminates chances for bearing damage. The plates are also used in Step 5 at disassembly removing the rotors from the discharge end bearings.

WARNING

Pulling directly on pinion teeth will damage teeth making timing difficult and will cause gear wear and failure.

The adaptor plates shown are designed for a jaw type hydraulic puller, FIGURE 4, page 23, and FIGURE 5.
7. Support the bearing carrier (5) with a hoist in the eye bolt (FIGURE 7). The tapped opening in the carrier is 1" P.T. An alternate method is to use a nut and washer on the end of the eye bolt with the long shank extended through the oil fill opening. Remove all carrier to housing screws. With four jack screws in the tapped holes in the carrier flange, FIGURE 7, pull the carrier. This also pulls the bearings from the rotor shaft. Tighten the jack screws evenly to prevent binding the carrier on the dowel pins and bearings. When the carrier is free, remove the bearing retainers (12, 13), bearings (36, 37), lip oil seals (86, 87) and shaft seals (22, 23). If the bearings are to be reused, handle with care.

NOTICE

Never reuse shaft seals that have been in operation. Refer to “Rotor Shaft Seal,” page 16.

After the carrier is removed, place .018” shim stock or sheet metal under the rotors in the machined area of the housing (1) to **support rotors level in the housing**. THIS IS IMPORTANT to prevent binding of the rotor shaft in the discharge end bearings when performing Step 9. Without shim stock under the rotors, damage to the discharge end bearings will result at Step 9.

8. Remove the discharge end carrier cover (19), shaft clamp plate (8), oil slinger (6), bearing lock-

9. Rig the plates (shown in FIGURE 1 and FIGURE 2, page 23) and the puller as shown in FIGURE 9 and press the rotor shaft through the bearings. Use a shaft protector. Be sure the bolts holding the plate are threaded into the tapped holes of the bearing housing far enough to prevent stripping of the threads, and evenly adjusted so the plate is square with the shaft. Press one rotor through the bearing at a time, then proceed to Step 10. Repeat Step 9 and 10 on the second rotor.

As the rotor moves through the housing, be sure it does not slide off the supporting shim stock placed under rotors in Step 7.
10. When the rotor shaft is free of bearings, work the rotor through the housing with the aid of a hoist until extended as shown in FIGURE 10. Block the rotor end as shown and rig a sling to complete removal of the rotor from the housing. Due to the weight of the rotors, handle with care to prevent burrs on rotors and housing.

11. After removal of the rotors, rearrange blocking so the carrier hangs free. Support the carrier with a hoist, remove all screws, and jack the carrier evenly from the dowel pins. See FIGURE 11.

Remove bearings (34, 35), lip type oil seals (32, 33) and rotor shaft seals (22, 23).
SECTION 7
ASSEMBLY INSTRUCTIONS

NOTICE

Illustrations for Assembly Instructions are taken from various sizes of CycloBlower. Minor variations in construction of some parts should not cause concern.

NOTICE

Numbers in parentheses () refer to key numbers in assembly drawings on pages 18 and 19.

The CycloBlower® is manufactured with close tolerances for efficient operation. All parts must be handled carefully to prevent burrs which will give false clearance readings and/or cause rapid wear.

All parts and oil passages must be thoroughly cleaned of dirt which will cause galling of close running parts. Clean work area, washing tank, tools, and wiping rags must be provided.

Refer to Parts List, Section 5, pages 18, 19, 20 and 21, for sectional views showing complete assembly of parts.

NOTICE

The following illustrations are of a standard blower with top inlet, bottom discharge, main rotor discharge end drive. Some variations will be noticed in the following illustrations for blowers of other arrangements.

There may be cases where foreign materials have entered the blower, or other causes have resulted in galling of the rotor ends, carrier faces, rotor lobes, or housing walls. Since the blower is designed with no contact of parts within the rotor chambers, these parts may be cleaned and polished for reuse unless galling is severe. Reuse of parts severely galled may result in loss of blower efficiency. All damaged parts which have been reworked should be checked for run–out or warpage before reuse.

Assembly of the “N” Series CycloBlower differs from earlier models in the approach to installing the oil seals. On previous models the installation of the lip seals into the bearing carriers was the first step in the assembly process. This was acceptable for seals with compliant lips but the hydrodynamic lip seals are made of Teflon and could be damaged by mishandling. On the “N” Series, the lip seals are not installed into the bearing carriers until after the rotors have been assembled. This requires that the lip seal is slipped over the rotor shaft so a hollow cylindrical pusher is needed as well as a short installation sleeve.

1. Oil the O.D. of the rotor shaft seals (22, 23) to prevent seizure and press into each bore of the gear end carrier (5) (FIGURE 1, page 28). NEVER REUSE SHAFT SEALS. Refer to “Rotor Shaft Seals,” page 16, for an explanation. A simple press utilizing a bolt and two bars, one across the seal and one underneath across the bearing bore, is an effective method for installing the seal. Tightening the nut on the bolt presses the seal into place. Press the seal .010” to .015” below the face of the carrier to prevent the end of the rotor from rubbing the end of the seal. A simple method is to place a .010” to .015” shim on the end of the seal under the press bar which will allow the seal to be pressed the correct distance below the face of the carrier. Handle the seal with care to prevent damage to the babbitt lining.

2. To ease assembly in later steps, fit the bearing spacers (20, 21) to the seals (22, 23) (FIGURE 2, page 28). Be sure there are no burrs on the spacer O.D. and seal I.D. The spacer should be SLIP FIT in the seal. A sloppy fit will cause excess air leakage and decrease blower efficiency. Do not drive the spacer through the seal as damage to the seal will result. It may be necessary to polish high spots from the seal I.D. to allow slip fit of the spacer. USE CROCUS CLOTH, not emery cloth.

Never push the grooved end of the spacer through the bearing oil seal as the lip of the seal may be damaged. When spaces are fitted, slide them on the gear end shaft extension of the rotors with the
grooved end toward the rotor. Make sure there are no burrs on either end of the spacer or end of the rotor. Place tape around the shaft to prevent the spacer from sliding off as shown in FIGURE 4.

3. Place .030” thick aluminum shim (26) on the gear end bearing carrier (5). The pointed section of the shim is positioned on the machined surface of the carrier to match the contour of the housing. Lower the housing (1), as level as possible, onto the carrier with the discharge opening up (FIGURE 3), and the inlet opening matching the cavity side (FIGURE 1), of the carrier. Engage the dowel pins (50) with matching holes in the carrier with care. Tighten the carrier to housing screws (56, 58) evenly so the dowel pins will not be damaged.

4. Be sure the ends of the rotors (2, 3) and machined face of the carrier are free of burrs and dirt. Lower the gate rotor into the housing first (FIGURE 4). The gear end shaft extension, with the bearing spacer installed, goes down. Rotors must be suspended plumb when lowering so the shaft extension and bearing spacer can be carefully guided through the close fit of the shaft seal without damage to the babbitt lining of the rotor shaft seals (22, 23). On older model blowers, match timing marks on the end of the rotor lobes as shown in FIGURE 9, page 30. Rotors must be used in matched pairs. Identifying marks are
FIGURE 5 – ANGULAR CONTACT BEARING ASSEMBLY

stamped on the O.D. of the rotors on the same lobe as the timing marks.

NOTICE

If rotors are installed in reverse of above instructions, the gate rotor bearing spacer O.D. will drag on the main rotor lobe and be damaged.

The CycloBlower is designed for no metal–to–metal contact with parts within the housing. To achieve this, some preliminary measurements are necessary before completing the assembly. The first set of measurements are used to determine the shaft shim set thickness necessary for positioning the rotors in the housing to give the required clearance between the end of the rotors and the carrier face at the discharge end. End clearance is maintained at the discharge end by two angular contact bearings, bearing spacer and shim set. The shaft shim set is determined as outlined in Steps 5 thru 8.

5. The angular contact bearings (34, 35) must be assembled as shown in FIGURE 5, page 29, to assure a "fixed" bearing. The marked face of the inner bearing is placed down in the bearing bore; the marked face of the outer bearing is placed up.

6. Install the shaft seal (22, 23), and fit the bearing spacers (20, 21) in the discharge end bearing carrier using the same method as outlined in Steps 1 and 2, page 27. To prepare for shim set measurement, slip bearings into the bore and install bearing retainer plates (14, 16), FIGURE 6. **Bearings must be assembled as directed in Step 5.** Bearings are slip fit in the bore.

7. Inspect bearing spacers for burrs on either end and polished area of O.D. Slip bearing spacer through the shaft seal with polished end toward the bearing. Make sure the spacer is resting solidly against the bearing. With depth micrometer, measure the distance from the face of the carrier to the end of the bearing spacer, FIGURE 7.

8. To the micrometer reading add discharge end clearance shown in clearance chart, FIGURE 8, page 30, and .002" for crush fit of shims and parts.
This sum gives the thickness of the shim set for positioning the rotor the required distance from the face of the carrier for running clearance at the discharge end.

EXAMPLE FOR 11CDL31 BLOWER: Micrometer reading of .060” plus .012” discharge end clearance, FIGURE 8, plus .002” crush gives shim set thickness of .074”. Figure shim set for each rotor and record measurements which will be used later in the assembly under Steps 15 and 16.

The second set of measurements is used to determine total end clearance. To give proper rotor end clearance at both suction and discharge ends (referred to as total end clearance) the distance between the face of the bearing carriers must be equal to the rotor length plus both end clearances. Total end clearance is obtained by adding shims as required between the flange of the housing and the discharge end bearing carrier. The thickness of the shim set is determined as outlined in Steps 9 & 10.

9. With a depth micrometer (FIGURE 9), measure the distance from the end of the rotor lobes to the end of the housing. Rotate rotors to check each lobe and record the largest micrometer reading. If the measurement varies more than .005”, remove the rotors and check for burrs on the gear end carrier face and the end of the rotors. To the largest micrometer reading add the Total End Clearance shown in the clearance chart, FIGURE 8, plus .002” for crush fit, to determine the thickness of the shim set.

EXAMPLE FOR 11CDL31 BLOWER: Micrometer reading of .090” plus .051” total end clearance plus .002 for crush gives a shim set thickness of .143”.

10. Select the correct thickness of aluminum shims to give the shim set established in Step 9. Check the thickness of the shims with an outside micrometer (FIGURE 10). Place the shims on the end of the housing, matching the pointed section of the

FIGURE 8 – ROTOR END CLEARANCE CHART (UNIT COLD)

<table>
<thead>
<tr>
<th>Models</th>
<th>Total End Clearance (Suction & Discharge)</th>
<th>Suction End</th>
<th>Discharge End</th>
</tr>
</thead>
<tbody>
<tr>
<td>11CDL23</td>
<td>.041</td>
<td>.029</td>
<td>.012</td>
</tr>
<tr>
<td>11CDL27</td>
<td>.046</td>
<td>.034</td>
<td>.012</td>
</tr>
<tr>
<td>11CDL31</td>
<td>.051</td>
<td>.039</td>
<td>.012</td>
</tr>
</tbody>
</table>

Dimensions are for Ideal Clearances. Allow +/- .001 for Tolerance.
shims with the contour of the housing. Remove bearing spacers from the discharge end bearing carrier, FIGURE 7, page 29, and place them over the shaft extensions, grooved end toward the rotor. Be sure the spacer fits solidly against the rotor. If measurements in Step 8 differ, make sure the bearing spacer is placed over its respective shaft extension to assure proper end clearance of each rotor.

11. Coat the I.D. of the shaft seals in the discharge end bearing carrier with “Moly” type grease. Remove bearings from the carrier. Tag bearings so they will be reassembled in the same bearing bore from which the measurement was made. Match the cavity of the carrier, FIGURE 7, page 29, with the discharge opening of the housing, FIGURE 11, and lower the carrier, suspended plumb, in place on the housing. Be careful not to damage I.D. of the shaft seal by the shaft extension. Be sure there are no shaft shims in place during this operation as sharp edges of shims will damage the seals. Tighten the carrier to the housing screws evenly to prevent damage to the dowel pins.

12. With the dial indicator attached as shown in FIGURE 12, check the total end clearance. Set the indicator on zero and lift the rotor with a hoist until the end of the rotor strikes the face of the discharge end bearing carrier. The reading of the indicator will be the total end clearance and should match dimensions listed in the clearance chart, FIGURE 8, page 30. If the indicator reading differs from the chart and allowable tolerance, repeat Steps 11 and 12 as well as check for burrs giving false readings.

13. These seals are uni–directional lip seals. They must be installed in the correct location and with proper orientation or the oil will be pumped out of the sump, not retained in it. The rotation arrows (stamped on the face of each seal) and the letters for clockwise (CW) rotation or for counterclockwise (CCW) rotation are located on the air side, not the oil side, of the seal case.

These seals have also been color coded so that the seals with the green outside diameter are always for counterclockwise rotation and the seals with the red outside diameter are always for clockwise rotation, when viewed from the air side of the seal. The gate rotor seal on the gear end will always be green so if you think of the three G’s, Gate, Gear and Green, you will always know where one seal gets installed. After that, the other rotor on the same end has to be of opposite rotation so the main rotor on the gear end would be a red seal. Since the rotation, viewed from the ends of the rotor, must be different from end to end, the inner seal on the discharge end of the main rotor would be green and the seal on the discharge end of the gate rotor would have a red outside diameter. The driveshaft seal will always...
have a red outside diameter for standard driveshard locations. Each of the seals has a dirt lip on the air side which does not have any spiral grooves in the lip. See FIGURE 13 for installation guidelines.

With the hydrodynamic seals, the bearing carrier must be lowered over the shaft first. The installation sleeves must be used to cover keyways and to provide smooth transitions onto the diameter changes.

NOTICE

Seals must stay on the shipping rings until it is time to install them. Otherwise the lips will deform. It is best to store them so the shipping ring is laying on a flat surface.

Never hang a lip seal through the bore!

14. Slide the protective installation sleeves over each shaft, FIGURE 14. Install the green outside diameter oil seal (32) on the main rotor shaft and the red outside diameter oil seal (33) on the gate rotor shaft. The dirt lip and the rotation arrow should be down. Drive the seal flush with the bottom of the oil channel cast inside of the bearing bore. Remove installation sleeves and store for later use on the gear end.

15. With a depth micrometer, FIGURE 15, page 33, measure the thickness of the shaft shim sets established in Steps 6 thru 8. Be sure shims are clean of dirt and oil for true measurement.

16. Check the end of the bearing spacer for dirt and burrs. Be sure the bearing spacer is solid against the rotor. Slide shim set over the shaft extension, FIGURE 16, page 33, up against the end of the bearing spacer.

17. Lightly coat the shaft extension and bearing bore with oil. Assemble bearings, as shown in FIGURE 5, page 29, on the shaft. Assemble the press plates (refer to FIGURE 1 and FIGURE 2 in Disassembly Section, page 23), on the bearing and install the jack screws, FIGURE 17, page 33. Progressively tightening nuts on the jack screws presses bearings in place. To prevent possible
damage to threads on the shaft, press one bearing over the shaft into the bore at a time, rather than with both bearings stacked together. When the first bearing is flush with the top face of the bore, the second bearing may be started. Tighten nuts on the jack screws evenly to prevent cocking of the bearings on the shaft and in the bore.

NOTICE

It is not recommended to hammer bearings of this size in place.

18. Install the bearing clamp plates (14, 16) and eight "nylok" type screws (67), FIGURE 18.

19. Install the shaft spacer (15), oil slinger (6) and shaft clamp plate (18) on the gate rotor shaft using three hex head "nylok" type screws (65). (FIGURE 19, page 34).

Be sure the reinforcing plate on the oil slinger is placed up and is located between the oil slinger and shaft clamp plate. Insert enough shim (75) behind the slinger so that the slinger is not distorted when the hex head nylok screws are drawn up tight. This operation pulls the gate rotor shaft through the bearings until the shims and bearing spacer are clamped solidly between the rotor end and bearings, assuring a fixed position of the rotor. Install lockwasher (42) and locknut.
(41) on the main rotor shaft. Drive the nut tight so that the shims and bearing spacer are clamped solidly between the rotor end and bearings. This is an important step in the assembly to assume a fixed position of the rotors. The best method for tightening the locknut on the main rotor shaft is with a wrench of the type shown in FIGURE 3 in “Disassembly”, page 23.

Bend the ear of the lockwasher into the slot of the locknut on the main rotor shaft extension.

20. Check the discharge end clearance of the rotor with a feeler gauge through the discharge opening (FIGURE 20). Also check rotor end clearance at the suction end through the suction opening. Clearance should match those listed in the chart, FIGURE 8, page 30, keeping in mind the allowable tolerance and possible .005 variation in rotor lengths. Never allow rotors to run closer than allowable tolerance. Wider clearance will not result in blower failure but may affect efficiency. If the discharge end clearance is too great, make sure the bearing retainer plates are tight, holding the bearing solidly in the bore, and the bearing retainer nuts are tight, which clamp the shims and bearing spacer solid against the end of the rotor. If clearance is too close, remove the discharge end carrier (4) and repeat the steps to establish shaft shim sets and total end clearance.

21. Check the shaft extension and keyway for burrs. Cover the shaft and keyway with the thin protective installation sleeve. Push the oil seal (31) into the seal adaptor (53). The CW rotation arrow on the seal face should be facing the exterior (air side). Install the seal adaptor gasket (54), seal and adaptor to the end cover (18) using four screws (70) and two dowels (52). Slide the end cover assembly over the shaft extension (FIGURE 21) and mount the cover to the bearing carrier with screws (59) and washers (60). Remove the protective installation sleeve. Drive dowels (51) into end cover/bearing carrier holes. Install drive key (49).

The third important measurement for clearance is to provide for floating bearings at the gear end.

22. Turn the unit end for end, gear end up. With a depth micrometer on a perfectly flat parallel bar across the bearing bore, measure the distance to the shoulder in the bearing bore, FIGURE 22, page 35.
23. Remove tape from the shaft holding the bearing spacers in place. Tap the spacer to be sure it is solidly against the end of the rotor. This is important for the next measurement. With a depth micrometer on the same parallel bar used above, measure the distance to the end of the bearing spacer, FIGURE 23.

24. Slide the protective installation sleeves over each shaft. Install the green outside diameter oil seal (87) on the gate rotor shaft (FIGURE 24) and the red outside diameter oil seal (86) on the main rotor shaft. The dirt lip and the rotation arrow should be down. Drive the seal flush with the bottom of the oil channel cast inside of the bearing bore. Remove installation sleeves.

25. Slide enough shims (28, 29) over the shafts (FIGURE 25) up against the end of the bearing spacer (20, 21) until the reading is .008” to .013” LESS than the reading in Step 22. This will give .008” to .013” running clearance between the inner race flange and the end of the bearing rollers.

26. Install the roller assembly of the bearing (36, 37) in the bore of the carrier with the numbered side out. The roller assembly is a slip fit in the bore. Coat the inner race of the bearing and shaft with
oil. **Slide the inner race of the bearing on the shaft with the flanged end out.** Assemble the press plate and jack screws as shown and press the inner race over the shaft solidly against the shims and bearing spacer, FIGURE 26. Tighten the nuts on the jack screws evenly to prevent cocking of the race.

27. Install the bearing clamp plates (12, 13) with “Nylok” type screws (67), FIGURE 27.

Check the fit of the key (47) in the gear hub (11) and pinion (10). Check the pinion, hub and shaft extensions for burrs. Install the keys in the shafts, making sure of a snug fit. Heat the pinion and hub in oil or dry heat, such as an oven (NEVER USE TORCH) to 350° F. for thirty minutes minimum to allow for complete heat penetration. If heating with oil in a confined area, use of cooking oils will prevent undesirable odors.

Lock the rotors from turning with a piece of hard wood or belting. Install the hub and pinion and pull tight with a locking device, FIGURE 27. Use the hub retainer (7) and screws (68) to pull the hub up tight against the bearing.

As the hub and pinion cool, check for tightness. The bearing and bearing spacer must be clamped tight against the rotor. Bend the ear of the lock-washer (42) into the slot of the nut (41) holding the pinion. Oil the bearings generously.

The final check to be made for running clearances is dividing the interlobe clearance of the rotors to prevent metal–to–metal contact. This is referred to as **“TIMING OF ROTORS”** and is accomplished in the following five steps.

28. Install the timing gear (9) on the hub, FIGURE 28, which is a slip fit. If gear teeth were marked at disassembly, line up these marks. New gears are not marked and should be positioned so tapped holes in the hub are centered with holes in the gear to allow radial movement of the gear for timing. Tighten the “Nylok” screws (69) against the flat washers (66) (always use new washers) just tight enough to allow the gear to slip radially on the hub. Mount an indicator and button bracket as shown in FIGURE 28. In order to accurately follow the next four steps in timing, the indicator must be mounted in a clockwise position from the bracket. The gear has a 3/8–16 tapped hole for indicator support. When the indicator is mounted, hold the
gear from rotating and with a wrench in one of the hub retainer screws, move the shaft in a clockwise direction until all slack is taken out of the gears and rotors to give a metal–to–metal contact. To prepare for the first reading, set the indicator at zero.

29. FINDING SMALLEST MINUS READING – FIGURE 29. Hold the gear under clockwise pressure to maintain metal–to–metal contact. Rotate the shaft counterclockwise two complete revolutions with a wrench. (Do not rotate by moving the gear.) If at any time the indicator hand moves to the plus side, reset at zero, and again rotate two complete revolutions. Notice the place of the smallest reading (this is the smallest number of thousandths from zero, not the smallest figure on the indicator dial). Continue rotation until the smallest reading is again reached and reset the indicator at zero. This is the closest clearance of rotors in this direction of rotation. If the indicator pointer flutters at any time during rotation, check for burrs or dirt on the rotors or gear teeth.

30. FINDING SMALLEST PLUS READING – FIGURE 30. Hold the gear under counterclockwise pressure to take up all slack, and rotate the
rotor clockwise two complete revolutions with a wrench. Note the place of the smallest plus reading, and continue rotation until the smallest reading is again reached and stop. This is the point of minimum interlobe clearance.

31. SETTING THE INTERLOBE CLEARANCE – FIGURE 31, page 37. The interlobe clearance is divided with 2/3 on the discharge side and 1/3 on the suction side. Hold the gear from turning. Move the shaft counterclockwise with a wrench just enough to obtain 1/3 of the indicator reading obtained in Step 29.

EXAMPLE: The minimum plus reading in Step 29 is +.018; move the rotor until the indicator reads +.012. This divides the interlobe clearance with 2/3 on the discharge side and 1/3 on the suction side.

32. Hold the gear and shaft from turning and evenly tighten five gear to hub “Nylok” screws (FIGURE 32, page 37). Be sure the indicator reading does not change while tightening the screws. The rotors are held in time by the clamp-action of the screws and distortion of the flat washers into the gear holes. Tighten screws securely. Check interlobe clearance to make sure the 2/3 indicator reading is on the discharge side.

Discharge side clearance is checked with a feeler gauge through the discharge opening in the housing. Rotate the blower several times to be sure timing has not slipped. Recheck the discharge side interlobe clearance and discharge end clearance. When timing is completed remove the indicator, button bracket and gear hub retainer plate. Install the hub retainer plate (7) with pilot in the hub bore with three “Nylok” type screws (68). Install the gasket (30) and carrier cover plate (19).

Install breathers (44) on bearing carriers (4, 5)

Referring to “Lubrication”, page 14, fill the carriers with proper oil. Cover all openings to prevent dirt entering the blower during transportation and installation.

If the blower is to be stored, refer to “Storage,” page 1.
GENERAL PROVISIONS AND LIMITATIONS

Gardner Denver (the “Company”) warrants to each original retail purchaser (“Purchaser”) of its new products from the Company or its authorized distributor that such products are, at the time of delivery to the Purchaser, made with good material and workmanship. No warranty is made with respect to:

1. Any product which has been repaired or altered in such a way, in the Company’s judgment, as to affect the product adversely.
2. Any product which has, in the Company’s judgment been subject to negligence, accident, improper storage, or improper installation or application.
3. Any product which has not been operated or maintained in accordance with normal practice and with the recommendations of the Company.
4. Components or accessories manufactured, warranted and serviced by others.
5. Any reconditioned or prior owned product.

Claims for items described in (4) above should be submitted directly to the manufacturer.

WARRANTY PERIOD

The Company’s obligation under this warranty is limited to repairing or, at its option, replacing, during normal business hours at an authorized service facility of the Company, any part which in its judgment proved not to be as warranted within the applicable Warranty Period as follows.

BARE BLOWERS

Basic bare blowers, consisting of all parts within, are warranted for 12 months from date of initial use or 18 months from date of shipment to the first purchaser, whichever occurs first.

Any disassembly or partial disassembly of the blower, or failure to return the “unopened” blower per Company instructions, will be cause for denial of warranty.

OTHER COMPONENTS

All other components are warranted for 12 months from date of initial use or 18 months from date of shipment to first purchaser, whichever comes first.

LABOR TRANSPORTATION AND INSPECTION

The Company will provide labor, by Company representative or authorized service personnel, for repair or replacement of any product or part thereof which in the Company’s judgment is proved not to be as warranted. Labor shall be limited to the amount specified in the Company’s labor rate schedule.

Labor costs in excess of the Company rate schedule amounts or labor provided by unauthorized service personnel is not provided for by this warranty.

All costs of transportation of product, labor or parts claimed not to be as warranted and, of repaired or replacement parts to or from such service facilities shall be borne by the Purchaser. The Company may require the return of any part claimed not to be as warranted to one of its facilities as designated by Company, transportation prepaid by Purchaser, to establish a claim under this warranty.

Replacement parts provided under the terms of the warranty are warranted for the remainder of the Warranty Period of the product upon which installed to the same extent as if such parts were original components thereof.

DISCLAIMER

THE FOREGOING WARRANTY IS EXCLUSIVE AND IT IS EXPRESSLY AGREED THAT, EXCEPT AS TO TITLE, THE COMPANY MAKES NO OTHER WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY.

THE REMEDY PROVIDED UNDER THIS WARRANTY SHALL BE THE SOLE, EXCLUSIVE AND ONLY REMEDY AVAILABLE TO PURCHASER AND IN NO CASE SHALL THE COMPANY BE SUBJECT TO ANY OTHER OBLIGATIONS OR LIABILITIES.

UNDER NO CIRCUMSTANCES SHALL THE COMPANY BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOSSES OR DELAYS HOWSOEVER CAUSED.

No statement, representation, agreement, or understanding, oral or written, made by any agent, distributor, representative, or employee of the Company which is not contained in this Warranty will be binding upon the Company unless made in writing and executed by an officer of the Company.

This warranty shall not be effective as to any claim which is not presented within 30 days after the date upon which the product is claimed not to have been as warranted. Any action for breach of this warranty must be commenced within one year after the date upon which the cause of action occurred.

Any adjustment made pursuant to this warranty shall not be construed as an admission by the Company that any product was not as warranted.